Главная Приборы и опыты Советы и методические материалы Статьи Контакты

Протоны и нейтроны

В ядерной физике для наблюдения быстрых заряженных частиц применяется в числе других приборов камера ВильсонаВсе окружающие нас предметы состоят из молекул, которые, в свою очередь, образуются из атомов, то есть мельчайших частиц химических элементов. Несмотря на исключительно малые размеры, атомы представляют собой весьма сложные образования, включающие центральное тяжелое ядро и легкую оболочку из электронов, число которых обычно равно порядковому номеру элемента в менделеевской периодической системе. В ядре сосредоточена почти вся масса атома. Оно также имеет очень сложное строение. Основными «кирпичиками», из которых построены ядра, являются протоны и нейтроны.
Протон - это ядро атома водорода, самого легкого химического элемента, занимающего в таблице Д. И. Менделеева первое место и в соответствии с этим имеющего в электронной оболочке всего лишь один электрон. Если ионизовать атом водорода, то есть удалить его единственный электрон, то останется ядро, которое из-за отсутствия оболочки можно назвать «голым» ядром и которое как раз и будет протоном (от греческого слова «протос» - первый).
Протон - положительно заряженная частица, причем заряд его по величине в точности равен заряду электрона. Масса протона выражается цифрой в 1,6-10-24 грамма. Это значит, что масса тысячи миллионов протонов в 10 тысяч раз меньше одной стомиллионной доли миллиграмма. И все же эта «элементарная» частица относится к разряду «тяжелых», ибо масса ее в 1836,6 раза больше массы электрона. Очень невелики и размеры протона: его диаметр в 100 тысяч раз меньше диаметра атома, равного примерно одной стомиллионной сантиметра. Вследствие этого плотность вещества протона, несмотря на его ничтожно малую массу, огромна. Если бы кубик с ребром в 1 миллиметр удалось наполнить этими частицами так, чтобы они целиком заняли весь объем, касаясь друг друга, то такой кубик весил бы 120 тысяч тонн! Конечно, в действительности осуществить подобный эксперимент нельзя. Протоны, будучи одноименно заряженными частицами, отталкиваются друг от друга, и нужны колоссальные силы, чтобы сблизить их. Однако есть звезды, на которых существуют условия, благоприятные для сравнительно близкого подхода протонов друг к другу. Эти звезды (например, звезда ванн - Маанена в созвездии Рыб) отличаются чрезвычайно высокой плотностью вещества, хотя она, разумеется, в миллионы раз меньше, чем в рассмотренном нами случае кубика, состоящего из одних протонов.
Тот факт, что в состав атомных ядер входят протоны, был доказан в результате опытов, проведенных в 1919 году английским физиком Резерфордом. В этих опытах он использовал поток быстрых альфа - частиц (то есть ядер атомов гелия), образующихся в процессе радиоактивного распада радия С. При бомбардировке альфа - частицами ядер азота обнаружилось, что последние испускали какие-то быстрые частицы с одновременным вылетом в противоположном направлении медленных тяжелых частиц. При изучении этого явления в камере Вильсона было установлено, что быстрые частицы представляют собой протоны, а медленные - ядра кислорода. Выяснилось, что ядро азота, захватывая одну альфа - частицу, преобразуется в ядро кислорода с испусканием одного протона. Бомбардировка альфа - частицами ядер атомов других элементов подтвердила наличие протонов и в этих ядрах.
Однако ядра (за исключением ядра водорода) не могут состоять только из одних протонов. Действительно, ядро атома гелия, занимающего второе место в таблице Д. И. Менделеева, имеет заряд, равный заряду двух протонов, а его масса больше массы протона в четыре раза. Точно так же заряд ядра кислорода равен восьми зарядам протона, а масса этого ядра в шестнадцать раз больше массы протона. Объяснение такого расхождения было найдено после открытия новой «элементарной» частицы - так называемого нейтрона.
В 1930 году ученые установили, что при бомбардировке альфа-частицами некоторых элементов (бериллия, бора и других) появляется излучение из незаряженных частиц, способное проникать через слой свинца сравнительно большей толщины (до 5 сантиметров). В 1931 году французские физики Ирэн и Фредерик Жолио - Кюри обнаружили, что если на пути этого излучения поместить вещество, молекулы которого содержат большое число водородных атомов (например, парафин), то из него начинают вылетать протоны.
Можно было бы предположить, что вновь открытое излучение состоит из фотонов. Однако для того, чтобы иметь возможность выбивать из парафина протоны, эти фотоны должны были бы обладать энергией около 50 миллионов электрон вольт. В последнем случае они проникали бы через значительно большие толщи свинца, чем наблюдалось на опыте (для прохождения фотона через 5 сантиметров свинца нужна энергия всего лишь в 5 миллионов электрон - вольт). Возникшее противоречие было решено в результате работ английского ученого Чадвика. Он показал, что вылетающие из парафина протоны, а также ядра, испускаемые под воздействием неизвестного излучения другими атомами, движутся так, будто они выбиты не фотоном, а тяжелой частицей, масса которой приблизительно равна массе протона. Таким образом, усилиями ряда физиков было установлено существование незаряженной тяжелой частицы - нейтрона. Масса нейтрона в 1839 раз больше массы электрона, но в отличие от протона (и электрона) его заряд равен нулю. Именно поэтому нейтроны обладают способностью проникать через толстые слои свинца.
Незаряженная частица может попасть внутрь атома, не испытывая ни отталкивания, ни притяжения со стороны заряженных частиц (электронов и ядра) и не тратя своей энергии на преодоление действия электрических сил, на ионизацию атомов. Отсюда и путь нейтрона, в каком - либо веществе при прочих равных условиях длиннее, чем, например, протона. Вследствие неспособности нейтрона производить ионизацию его очень трудно заметить, что явилось причиной сравнительно позднего обнаружения этой частицы.
Открытие нейтрона позволило понять, почему вес атомных ядер превышает вес содержащихся в них протонов. Советские ученые Д. Д. Иваненко и Е. Д. Гапон выдвинули идею о протоно - нейтронном строении ядер, которая ныне является общепринятой. Согласно этой точке зрения, в ядре гелия находятся, кроме двух протонов, еще два нейтрона, и поэтому его заряд равен двум, а масса в четыре раза больше массы протона (или почти равной ей массы нейтрона). Точно так же и в других ядрах, помимо протонов, присутствуют нейтроны. При ядерных расщеплениях, вызываемых, например, попаданием в ядро быстрой альфа-частицы, может происходить испускание нейтронов. Этот процесс как раз и послужил первым указанием на существование последних.
Не имеющий заряда нейтрон легко может проникать не только внутрь атома, но даже и внутрь ядра. Попадание нейтрона в тяжелое ядро приводит в ряде случаев к разрушению последнего, в результате чего образуются более легкие ядра и выделяется весьма значительное количество внутриядерной энергии. Свойство нейтронов производить ядерные расщепления используется для получения атомной (правильнее было бы сказать - ядерной) энергии.
Большая проникающая способность нейтронов, наряду со способностью разрушать ядра, обусловливает их опасное действие на живые существа. Достаточно мощный поток нейтронов, попав во внутренние части организма, выбивает из ядер быстрые протоны и другие заряженные частицы, которые, ионизуя встречающиеся на их пути атомы сложных органических молекул, способствуют разложению последних и тем самым нарушению жизнедеятельности растения или животного. Однако разрушительные свойства нейтронов можно использовать для блага людей. Ведь именно с помощью этих частиц ученые открыли прежде недоступные природные кладовые внутриядерной энергии: Разбивая ядра, нейтроны высвобождают эту энергию, которую у нас в Советском Союзе уже применяют в мирных целях. Кроме того, некоторые химические элементы после бомбардировки нейтронами превращаются в искусственные радиоактивные вещества, находящие все более широкое распространение в медицине, при изучении жизнедеятельности организмов методом меченых атомов, в технике и т. п.
В настоящее время существует много способов получения нейтронов, необходимых для проведения различных исследований в области ядерной физики и для ряда практических применений. Самым старым из этих способов является изготовление так называемого радий - бериллиевого источника. Стеклянный или металлический сосудик заполняют порошком бериллия в смеси с какой-либо солью радия (например, бромистым радием). При радиоактивном распаде из ядер радия вылетают альфа-частицы, которые, взаимодействуя с ядрами бериллия, выбивают из них нейтроны. Последние благодаря большой проникающей способности свободно проходят через стенки сосуда.
После изобретения специальных устройств - ускорителей (циклотронов, фазотронов, синхрофазотронов и других), сообщающих заряженным частицам большие энергии, появилась возможность получать нейтроны искусственным путем. Для этого пучок ускоренных в циклотроне или другой подобной машине заряженных тяжелых частиц, скажем, дейтронов (ядер тяжелого водорода), направляют на мишень, сделанную из определенного вещества (например, из лития). В результате из ядер атомов мишени выбиваются нейтроны. Меняя энергию бомбардирующих мишень «снарядов», можно получать нейтроны различной энергии.
Еще одним мощным источником тяжелых незаряженных частиц являются ядерные реакторы (котлы), в которых осуществляются цепные реакции деления тяжелых ядер. При этом образуется большое число нейтронов, выходящих из котла наружу.
Нейтроны, как и другие «элементарные» частицы (электроны, протоны), обладают волновыми свойствами. Пучок нейтронов, подобно свету (потоку фотонов) 3, испытывает отражение, дифракцию, поляризуется и т. п. Поэтому тяжелые незаряженные частицы можно использовать для изучения строения кристаллов (путем их просвечивания нейтронным пучком) так же, как используются рентгеновские лучи. Некоторую трудность представляет регистрация нейтронов, ибо они не производят ионизации и потому нельзя заметить их прохождения через камеру Вильсона, счетчик, ионизационную камеру я другие приборы, применяющиеся обычно для обнаружения и счета заряженных частиц. Не оставляют следов нейтроны и в фотоэмульсиях. Однако свойство нейтронов разрушать ядра, вызывать ядерные реакции дает нам в руки способ для регистрации этих частиц. В обычный счетчик или ионизационную камеру добавляют газ, содержащий ядра бора. Нейтроны расщепляют эти ядра, при этом вылетают альфа-частицы, создающие разряды в счетчике или ионизационный ток в камере, что позволяет фиксировать поток нейтронов. Можно воспользоваться для обнаружения нейтронов фотоэмульсиями, к которым подмешаны соли лития или бара. При попадании нейтрона в ядро атома какого - либо из этих элементов происходит расщепление ядра с вылетом быстрой заряженной частицы, след которой виден в фотоэмульсии.Так называемый радий-бериллиевый источник испускает поток нейтронов, способных проникать через свинцовую стенку толщиной до 5 сантиметров. Проходя через вещество, содержащее большое количество атомов водорода (например, через парафин), нейтроны выбивают из него протоны, которые и обусловливают появление значительного тока в ионизационной камере (обозначенной кружком внизу). Ток в другой камере, куда нейтроны попадают без прохождения через парафин, ничтожно мал
Несмотря на то, что между протонами и нейтронами имеется существенное различие, заключающееся в отсутствии заряда у последних, в других отношениях они очень похожи друг на друга. Массы этих частиц почти в точности равны, а их поведение внутри ядра (величина и характер ядерных сил, действующих между протонами, между нейтронами и между теми и другими) также примерно одинаково. Дело в том, что протоны, как одноименно заряженные частицы, должны отталкиваться в ядре друг от друга. Поскольку все же ядра существуют в виде устойчивых образований, очевидно, что протоны удерживаются в них какими-то силами, превышающими электростатические силы отталкивания. Оказалось, что эти специфические ядерные силы действуют не только между протонами и между нейтронами, но и связывают друг с другом частицы обоих этих видов. Это значит, что протоны и нейтроны ядра определенным образом взаимодействуют друг с другом (хотя физическая природа такого взаимодействия еще далеко не выяснена). Учеными было также обнаружено, что обе частицы могут превращаться друг в друга. Так, в ядре происходит превращение нейтрона в протон с испусканием отрицательно заряженного электрона и еще одной незаряженной легкой частицы -нейтрино (масса нейтрино меньше 1:400 массы электрона). Имеет место и другой процесс: протон в ядре переходит в нейтрон с вылетом положительно заряженного электрона (позитрона) и нейтрино. Все эти явления, наблюдаемые при распаде некоторых радиоактивных ядер, получили одно общее название бета - распада.
С точки зрения теории бета - распада, нейтрон и протон ничем не различаются: и тот и другой хорошо превращаются друг в друга. По этой причине обе частицы нередко называют просто нуклонами. Следует, правда, подчеркнуть, что если в ядре все нуклоны ведут себя по отношению к бета- распаду одинаково, то в свободном состоянии, вне ядра, протоны и нейтроны проявляют различные свойства. Протон сам по себе - устойчивая, или, как говорят иначе, стабильная частица, в то время как свободный нейтрон самопроизвольно распадается с периодом полураспада примерно в 20 минут. При этом он превращается в протон и испускает, как и при распаде внутри ядра, электрон и нейтрино.
Различие между протоном и нейтроном в свободном состоянии обусловлено рядом причин. Одной из них является то, что для превращения протона в нейтрон нужно затратить значительную энергию (во всяком случае большую, чем 1,9 миллиона электрон - вольт). Поскольку свободному протону неоткуда позаимствовать эту энергию, он и представляет собой стабильную частицу. Что же касается нейтрона, то он обладает большей массой, чем протон, и, следовательно, большим запасом энергии. При превращении нейтрона в протон выделяется приблизительно 800 тысяч электронвольт энергии. Поэтому свободные нейтроны отличаются свойством радиоактивности.
Протоны, нейтроны, нейтрино, так же как фотоны и электроны, встречаются в космических лучах. В частности, протоны составляют так называемую первичную компоненту космического излучения, то есть приходят на Землю из межзвездного пространства. Разумеется, нейтроны, которые в свободном состоянии превращаются в протоны, не могут присутствовать в первичном излучении. Однако они образуются в атмосфере при столкновении первичных протонов (и более тяжелых ядер) с ядрами атомов азота, кислорода и других газов воздушной оболочки нашей планеты. Протоны космических лучей обладают колоссальной энергией и поэтому могут, несмотря на наличие положительного заряда, легко проникать в ядра атомов. При столкновении нуклонов, обладающих такой гигантской энергией, происходят процессы, которые не наблюдаются при взаимодействии нуклонов меньшей энергии. Например, при таких столкновениях происходит рождение новых частиц - мезонов различных масс.
Описанные выше факты взаимодействия нуклонов в ядре совсем не означают, будто нейтрон состоит из протона и электрона или, наоборот, протон содержит в себе нейтрон и позитрон. Суть бета - распада заключается именно в том, что нейтрон превращается в три другие частицы (протон, электрон, нейтрино) или протон превращается в нейтрон, позитрон и нейтрино. Эти процессы происходят при строгом соблюдении законов сохранения энергии, массы, количества движения, заряда и т. п. и убедительно свидетельствуют об изменчивости «элементарных» частиц и наличии глубокой связи между ними.

fizika.i-ignatova © ru